مقایسه کارایی روشهای نروفازی، شبکه عصبی مصنوعی و مدلهای آماری در تخمین رسوب معلق رودخانهها(مطالعه موردی: بالادست حوضه طالقان)
author
Abstract:
برآورد دقیق میزان رسوب معلق رودخانهها از مسائلی مهم در طراحی مخازن، آلودگی دریاچهها، طراحی کانالها و لایروبی آنها بعد از سیلابها، تعیین خسارتهای ناشی از رسوبگذاری و تعیین تأثیرات مدیریت آبخیز است. روشهای متعددی بهمنظور برآورد بار معلق رودخانهها وجود دارد. یکی از این روشها، که در حل مسائل مختلف هیدرولوژی رسوب و پیشبینی آن کاربرد زیادی دارد، روشهای نوروفازی و شبکههای عصبی مصنوعی است. در این مطالعه ارتباط رسوب و دبی لحظهای متناظرش بهطور موفقیتآمیزی با استفاده از این روشها مدلسازی و مورد اعتبارسنجی قرار گرفت. هدف از این تحقیق، کارایی روشهای نوروفازی و شبکه عصبی نسبت به مدلهای آماری در برآورد رسوب معلق روزانه رودخانه طالقانرود حوزه آبخیز طالقان میباشد. نتایج نشان داد، برآوردهای ساختارANFIS ، با میانگین قدرمطلق خطای نسبی، 1006 تن در روز، ضریب همبستگی 77درصد، میانگین مربعات خطا2621 تن در روز و ضریب ناش- ساتکلیف 51/0 نسبت به شبکه عصبی و همچنین برآوردهای شبکه عصبی در مقایسه با مدلهای آماری از دقت بالاتری برخوردارند. بنابراین روش ادغام شبکه عصبی با قوانین فازی توانسته تغییرات بار رسوبی رودخانه را بر اساس دبی روزانه، بهتر از مدلهای دیگر برآورد کند. دیگر مزیت این روش حساس نبودن به وجود تعداد معدودی خطا در دادههای آماری است که همین امر باعث برآورد بهتر مدل شبکه عصبی در مقایسه با مدل آماری شده است. همچنین با بالا رفتن درصد دادههای آموزش نسبت به دادههای امتحان، روش نروفازی جواب مناسبتری میدهد.
similar resources
تخمین دبی بار معلق رسوب با استفاده از بهترین ساختار شبکه عصبی مصنوعی در حوزه آبخیز طالقان
Prediction of sediment load transported by rivers is a crucial step in the management of rivers, reservoirs and hydraulic projects. In the present study, in order to predict the suspended sediment of Taleghan river by using artificial neural network, and recognize the best ANN with the highest accuracy, 500 daily data series of flow discharge on the present day, flow discharge on the past day...
full textمقایسه میزان کارآیی شبکه عصبی مصنوعی و مدلهای رگرسیونی، منحنیسنجه رسوب در برآورد رسوب معلق روزانه
تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...
full textمقایسه روش های شبکه عصبی بیزین و شبکه عصبی مصنوعی در تخمین رسوبات معلق رودخانه ها (مطالعه موردی: سیمینه رود)
زمینه و هدف: شبیه سازی و ارزیابی آورد رسوب رودخانه از جمله مسایل مهم در مدیریت منابع آب می باشد. اندازه گیری مقدار رسوب به روش های متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده و گاهی از دقت کافی نیز برخوردار نمی باشد. روش بررسی: در این پژوهش تخمین رسوب رودخانه سیمینه رود واقع در استان آذربایجان غربی، با استفاده از شبکه عصبی بیـزین مورد بررسی قرار گرفته و نتایج آن با روش های مرسـوم هوشمند هم...
full textمقایسه مدلهای شبکه عصبی مصنوعی و منحنی سنجه رسوب در شبیهسازی میزان رسوب معلق؛ مطالعه موردی حوزه آبخیز شاهرود
این پژوهش با هدف مقایسه کارآیی برخی مدلهای شبیهسازی میزان رسوب معلق شامل منحنی سنجه رسوب و شبکه عصبی مصنوعی و ارائه مدل بهینه بر اساس دبی جریان در حوزه آبخیز شاهرود و بر روی ایستگاههای هیدرومتری گلینک، باغکلایه، لوشان و رجائی دشت انجام شد. به منظور شبیهسازی میزان رسوب معلق از مدل منحنی سنجه رسوب یک خطی و مدلهای شبکه عصبی پرسپترون چند لایه و تابع پایه شعاعی بهره گرفته و سپس ارزیابی این مدل...
full textکاربرد سنجش از دور و شبکه عصبی مصنوعی در تخمین غلظت رسوب معلق رودخانه (مطالعه موردی: رودخانه کارون)
Spectral Reflectance of suspended sediment concentration (SSC) remotely sensed by satellite images is an alternative and economically efficient method to measure SSC in inland waters such as rivers and lakes, coastal waters, and oceans. This paper retrieved SSC from satellite remote sensing imagery using radial basis function networks (RBF). In-situ measurement of SSC, water flow data, as well ...
full textMy Resources
Journal title
volume 69 issue 1
pages 65- 78
publication date 2016-05-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023